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1. INTRODUCTION

Tension cracks often form in brittle solids. because of a variety of mechanisms. such as
nonuniform shrinkage due to loss of moisture or due to creep deformation. nonuniform
temperature fields, radiation induced nonuniform volume chaqes and others. Mechanisms of
this kind are "strain-controDed," in the sense that at each stage otcrack growth. the total elastic
strain energy available to each crack is finite. Upon crack extension, the elastic energy is
released and therefore the crack growth is self-arresting.

However, in a suitable setting, two or several tension cracks may interact which may lead to
abrupt changes in their growth pattern. For example. as cracks grow with a continuous supply
of elastic energy (e.g. because of continuous loss of moisture or heat), a critical state may be
reached. where some cracks stop growing. as others grow at a faster rate. Another example of a
change in the growth pattern is when some cracks actually snap closed while others extend by a
finite amount. Unstable crack growth of this kind was first examined by Nemat-Nasser[l,2] and
with detailed calculations by Nemat-Nasser1 et aI.l3] and Keer et aLl4]. Although a number of
interesting and essential features pertaining to this class of problems have been delineated in
the above references. several other key questions have been left unresolved. A question of
considerable practical improtance is the elect of small imperfections which are bound to exist
in real situations. As is now weD-known. stability of many elastic structures is imperfection
sensitive, in the sense that small geometric or other imperfections may reduce by a Jarae
amount the value of the critical load at which the structure becomes unstable. This has been
examined in a pioneerina work by Von Karman and Tsien[6] and has since been tborouahJy
explored both thcoreticalJy and experimentally by a number of other researchers; for
references and discussions, see Hutchinson and Koiter[7], Chilver[8] and Roorda[9]. We shaD
show in this paper that for interacting tension cracks, also. small imperfections can sub­
stantially reduce the level of straining at which a crack growth pattern becomes unstable. In
fact, for the example used to illustrate the basic results. it turns out that a 396 imperfection in
material parameters reduces the critical value of the "load parameter" by more than 20%.
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The theory is presented for a system of parallel edge cracks in pJane strain, induced in an
elastic half-plane by the removal of heat at the free surface. This problem arises in con·
sideration of heat extrlction from bot dry rock masses, a project which recently bas been
initiated and to a Iarae extent, succ:eufully implemented at the Los Alamos Scientific Labora­
tory in New Mexico (for discussion aDd references, see Nemat·Nasser tt al.[3,10]).

This paper is 0".,... in the followiDg manner. The basic problem used for illustration is
defined in Section 2. TIae theory is presented in Section 3, where the DOtio. of f1Atldlmental
equilibrium path, stable and UDStIble bifurcation points, SQlP-tbrouIb aitical point and iatper­
fection sensitivity are introduced. Numerical results are then presented in Section 4, for an
infinite strip of &aite width containina equally spaced edae cracks at both edacs and the entire
history of growth pattern of these cracks is traced to the point of failure at wbicb some of the
cracks emanating from opposite edaes run into each other, causiIw splitting of the strip into
pieces.

For the actual analysis it is possible to use a method similar to that employed in[3]. Here,
however, we shall use the novel analysis scheme recently proposed by the present authors [JJ],
which combines analytical calculations with a finite-element approach, and which leads to a
rather effective solution procedure. For the sake of completeness, a brief summary of this
method is presented in Appendix. A.

2. STATEMENT OF PROBLEM

In[3,4] an homoaeneous isotropic elastic half-plane whicb is initially at a uniform tem­
perature, To. and is then continuously cooled at its free surface, has been CODSidered.Because
of tbis cooling, a thermal boundary layer of thickness 8, measured from the free surface along
its normal, develops in the solid. This may then lead to the formation of tension cracks
emanating perpendicularly from the free surface of the half-plane. The authors in [3, 4] confine
attention to a state of plane strain, assume a set of initially equally spaced edge-cracks and use
for iUustration the following temperature profiles; see Fig. J:

T = 0 for O:s y :s 8/(n + I),

T = To [1- cos 11' yen + 1) - 6] for 6/(n +1):s y :s 6,
2 n6

T = To for 8 :s y, (2.1)

where n =0.5 is used (see Fig.lb); and

T=Toerf(Y~3] yl:1:0, (2.2)

T T x

8 2

1
y y

(0) lb} Ie)

rJl. I. (a) TempcratW'e profile eqn (2.2); (b) temperature profile eqn (2.1); (c) bIIf-piane with equally
spaced cracks.



Unstable growth rI tension <:racks in brittle solids 1019

The IetIlpeIUn profile (2.2) corresponds to~ tbt.. '."U..;a URiform iDitiai
te1BpeI'IItIn r._ iIIfree.t.ee y • Ois In to 0111 $ .11 ••1._ t ..0_kept
zero...., 'Y~ heat 'TI In_.fa......... be IIIGWII that
6 ..(ttl4 wIlere t is tilDe. k is the cooductivity,,,." sn '••IIity,..C is..heat capacity
oftlae "'1111. Utll ..... (2.1) " •• l toildllle•••IPPIODDate
~ lrIDIferbyCOll iaNlDOved by....of water wbicb
lDOVIIo tlaecncb. ForapplicMioll to .....,extrae1ioD, the two profiles may be
reprded as IiIDitiq cases, and therefore useful for obtaiaiq aood estimates; see (10].

Initially, the cracks are all equal in leflllh, and IfOW in a stable manner, as the thickness of
the thermal layer,6, is increased; 8 is used as a meuure of the load parameter. As Ioaaas the crack
spaciq b is Iaqe compared with the common crack length h, there is very weak interaction
between adj..t craeb, and such a crack arowtb pattern is'inherently stable. In this case, each
crack may be reprded as an isolated one and since for a fixed 8, there is a fixed amount of elastic
ene11Y available, an extension of a crack at constant 8 would release a certain amount of elastic
enerlY, which results in areduction of the correspondina stress intensity factor at the crack tip, and
therefore crackIfOwtb will be arrested. IfK is the stress intensityfactor, then we bave, in this case,
aK/ah <0; see f'i8. 3 of [3].

As the common CI1ICk Jenath increases with increasinB 8 the interaction between adjacent
'Cracks becomes more important In Fig. 2 two interactina cracks are shown in a unit cell, with
hi and hzas their correspondinB lengths, and K, and Kz the stress intensity factors; the critical
value of the stress intensity factor is Kc• In [3] the following results have been obtained and
numerically illustrated.

The equilibrium regime

(2.3)

is stable as long as

(2.4)

and it is unstable for

(2.5)

the critical state corresponding to

(2.6)

I.. I~

When the critical state (2.6) is reached, one crack (say, crack 2) stops STowing, as the other
crack extends spontaneously (i.e. without chanae in 8) by an infinitesimal amount As the load

,
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Y... 2. A typicII unit cell with two intenctina cracks.
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parameter is increased, crack 2~ statioDary whiJe crack I grows at a faster rate. During
this process, Kz c:oatiaues ...-.ase willa increasing 6 and for temperature profile (2.1), it
~y becomes zero critical state, after which crack 2 maps closed, wbi1ecrack 1
exteDds by an additi amount.

In a recent work, 811Mi4 aL{ll) have shown that, before the critieal SlI&C~ to
(2.6) is reached, dille are· iBfiniteIy many stable critical states, at each of which twodistiDct
crack arowth paUems become possible: (1) equal crack growth regime de&Md by (2.3); and (2)
a crack growth regime corresponding to

(2.7)

i.e. one crack remaining stationary, as the other crack grows with increasing 8. These and
related results are discussed in the following section.

3. CRITICAL STATES ANDPOST-eRITICAL BEHAVIOR

3.1 Furulamental equUibrium path
Consider the h.. hz, 8-space; Fig. 3. The fundamental equilibrium path in this space is the

locus of points for which (2.3) holds. In Fig. 3 this is denoted by curve AB"B.Points on this
curve define equilibrium states, not all of which are stable.

3.2 Stable bifurcation points
When the common crack length, h = hi = hz, is small relative to the crack spacing, the two crack.s

in the unit cell of Fig. 2have a weak interaction. In this case, if at constant hzand 6, hI is increased

A

A

"z

B:
"'-,

"'-

"" '8'-·_·JB
~, .,,,

, , , , , ,

rl&. 3. Various equilibrium states for two interactina cracks: B* is stable and B. an unstable bifurcation
point; Bt and B. are snap-through critical points.
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by an infinitesimal amount, the sbas 8eId will be ,..,., at both cnct tips, and therefore,
aK./"'. <0 and aK,jM. <0. the weak iDteractioIl tIleD.... tbat the ItIas is released more at
cnct 1thaD atcrack2,becIutIe oftheextensionofCIMt 1.while keepiDlII2and 8fixed. Hence, we
must have IIKJIII.I <I'K.''''.I. Por this reaime w1lave

(3.1)

The only possible crack extension regime then is defined by (2.3), namely the fundamental
equilibrium path.

To'prove this assertion, first observe that since K. =K I (h" laz, 8),

(3.2)

Now, for d8 >0 and dh. >0, i.e. elKl =0, obtain

(3.3)

and, upon substitution into (3.2h, arrive at

(3.4)

(3.5)

(3.6)

where. since hi =hz, and since there is complete symmetry in this case, condition aKl/H =
'K,ja8 is used.

For dhl ==~, (3.4) yields dKz=0, and hence Kz== Kc: the state remains OD the fundamental
equilibrium path. Suppose DOW, dhz~dh" and assume dhz>dh•. Then from (3.1) and (3.4) it
follows that elKz< O. aad hence dlaz must be equal to zero. which is a contradiction. Moreover.
if we Illume OSdhz<dh" we obtain dKz>O, Which is impossible, since Kzcannot exceed its
critical value ICc. Hence. as lona as (3.1) holds. incremental crack extension satisfies dial =dhz.
and the state remains on the fundamental equilibrium path AB.

As the two cracks in Fia- 2 JI'Ow with increasing 8, their interaction becomes more important
and when their common lenath is large enouab, then a point may be reached at which, with h2

and 8 kept constant, an infinitesimal aten.sion of crack 1 dterrQSu the stress intensity factors
at CI'ICk 2 IDd cnct 1 by an equal amount 1bis defines a crilictll point on the fundamental
equilibrium path. It is a IttJble bifllfCation point, and is characterized by the condition

aKI =aKz=aKI =aKz<0 h =h
ah l 'hz "'z ah. ,. z·

To see that the state associated with (3.S) is indeed critical, observe that equilibrium requires
elK. • dKz,. 0 for d8 > 0, and hence (3.2) yields

dhl-(~~_~~) d31{(~)2_(~)z}'Ia. a8 ala. a8 ah. ahz '

cUtz _ (!!J~_ aK.~)dll{ (~)z_(!!l)Z}.
811. 18 ala. a8 ah. aIIz

Therefore UIIiqueaeu iliolt wheD (3.5) is satisfied. OIl the fnnclamentll equiIibriua path in Faa.
3. this point is denoted by B-. On this same path, points above B- (but below B.) laCilfy the
followina conditions:
55 Val. 16, No. 11-£



1022 S. NENAT·NASSER tt aI.

(3.7)

and hence correspond to stable states. However, each one of these points defines astable
bifurcation point from which another equilibrium path emanates.

In the immediate neilhborhood of the fundamental path, these bifurcated paths characterize
states with smaller total stored elastic energy per unit cell, and hence define more stable states
than the corresponding ones (for the same 8) on the fundamental equiliorium path. We shall
prove this assertion in the sequel, but first we shall show the existence of these stable
bifurcated equilibrium paths.

To this end consider a typical point on the fundamental equilibrium path above B*, say, point
BI in Fig. 3. At this point, conditions (3.7) hold. Consider now an increase in the load
parameter, d8 > O. If equal crack growth is assumed, then point B2 on the fundamental
equilibrium path will be attained and we will have

h.(B2) =h~B21 =h,(B,)+dh, =h2(B,) +dh2,

dhl =dh2> 0, dK I =dK2 =0, K,(B2) =K~B2) =K c ; (3.8)

here h,(B2), for example, denotes the length of crack I at the state corresponding to B2•

In addition to the equilibrium state (3.8), conditions (3.7) and (3.4) reveal that another
equilibrium state with, say, dh2=0 is now possible, because in this case, dK2< O. This new
equilibrium state is denoted by B! in Fig. 3. It is characterized by

h.(B!) =h\(B1)+dhT, h2(B!) = h~BI) =h\(B\),

dhT >O,dh! =O,dK, =0,dK2<O, K,(B!) = Kc, K 2(B!) <Kc• (3.9)

Both states, B2 and B!, which correspond to the same value of the load parameter, 8 =
8(B,) +dBo, are stable; here, d80 is a fixed load increment. But as we shall show below,stale B!
on the bifurcated path corresponds to a smaller stored elastic energy, and therefore is more
stable.t

To this end we observe that if there are no cracks in the solid, the total stored elastic energy
per unit cell (and per unit thickness in the diJ:ection normal to Fig. I) is a finite quantity
proportional to the thickness of the thermal layer, 8. This is because the temperature profiles
(2.1) and (2.2) involve only ylB and therefore intearation of the elastic eneraY density over a unit
cell would always lead to a quantity of the following kind:

~(8)=A8, (3-.10)

(3.11)

where A is independent of 8, but depends on material parameters, total temperature drop, and
the shape of the temperature profile. For profile (2.1), for example, we have (in plane strain,
with the free surfacet)

19ci2TiEb
A =48 (1- v) ,

and if we approximate the temperature profile (2.2) by T =T0[1- (1- 11&}'1, then we obtain

(3.12)

It is clear that in the present context other reasonable temperature profiles would always lead to

nbc fact that theDte witIa IItIIIter stond..CUllY is more stable fQllows from Gibbs' stIIeIDeDt of sec:oad taw of
thertMclyttl_: for dte IfIlIicItbt of this to fntt:Iln proIlIemS, tee Nemat·Nasser[l2. 13).

tWlthout the flee surface. (1- ..) must be replaced with (1- 2..). 6 is then measured from the center. Ilona the c:ratk.
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an expression similar to (3.10), with A depending on the shape of the temperature profile, but
not on 8.

When cracks exist, part of the total elastic eocl'lY liven by (3.10) is used to Fnerale crack
surfaces, and the remainina part is stored in the body,

i =1, +S, (3.13)

where r, is the stored elastic energy per unit cell and S is the corresponding surface eDCl'IY.
Since for a fixed 8 the total supplied energy r is fixed, the state with larger total surface energy
wiD have smaller stored elastic energy. Therefore, to prove that state B! is more stable than B2,

we shaD show that S(B!) > S(B~. However, since .

S(B~=S(B I) +2(dhl +dh~-y, dh I =dh2,

S(B!) = S(BI) +2dhfy, dh! =0,

to prove our assertion, we need only show that

(dh. +dh~ =2dh. >dhT;

(3.14)

(3.15)

(3.16)

in (3.14) -y is surfau energy per unit area and relates to the critical value of the stress intensity
factor by K~=2-yE/(l- J1~, where J1 is the Poisson ratio and E Youna's modulus.

To prove (3.15), we recalJ that the load parameter at both states, B2 and Bt, bas the value
8(Bi) =8(B!) = 8(B.) +d80. where d80 is fixed. It then follows that

8K. d _8K2d B
88 60- 88 60 at I'

for point B2 on the fundamental path, dhl= dh2 and we obtain from eqn (3.2),

dh =_aK1dJ:/(8KI +8KI)
I a8 UOI ah l ah2 '

For point B!, on the other band, dh! =0. Equations (3.2) then yield

(3.17)

(3.18)

Now, in view of (3.1), we have dhf >2dh1 which is (3.15). Note that in expressions (3.16)-(3.18)
the partial derivatives are aD evaluated at state Bit for which hI =h2•

Tbe fact that the state on the bifurcated path is more stable than the correspondina one on the
fundamental path, may be proved in a dilerent but equivalent manner. For this, one may
COIIIider two aeiahborinI states and iDstead of fixiq the load parameter, one chooses these
two DeiIhboriaI states in such a manner that they, cormpolUl to 1M",. tOltll ","act lilt"'.
Then the state with ..uer stored elastic CDeI'IY would involve SDIIIler total eDeI'IY and
therefore, would conespoad to a smaller load parameter. Helice, it wiD be the one which
aetually wiD be attained. If the two neiabborina states, St and St, one on the fundamental
equilibrium path and the other on the bifurcated path, have the same surface eneqy, we must
have, for the conapoadiaa incremental crack Jenaths, dhl=dht-Idh', ad dh!=O. Then
from (3.10) and (3.13) we obtain

which, in view of (3.7), yields
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(3.20)

as required. Note that the actual states corresponding to a prescribed fixed load parameter may
not be the same as those corresponding to a fixed surface energy.

To the second-order approximation used in arriving at (3.15), the two surface energies, one
corresponding to a neighboring point on the fundamental path and the other to a point on the
bifurcated path, would be equal at point B*, i.e. we have

dhT =2dh, at B*. (3.21)

However, if the higher-order terms are used, a conclusion similar to (3.15) wiD apin be reached.
We have circumvented the need for such a tedious consideration, by examining states in the
neighborhood of point BI for which the strict inequality (3.7) holds; note that at point B*
conditions (3.5) hold.

3.3 Post-critical response
As discussed above, at the state corresponding to point B*, every other crack in the array of

cracks shown in FI8. 1 stops, as the remainina ones srow with increasina toad parameter Sand
at a rate initially twice as fast as before; this latter assertion follows from eqn (3;21). To examine
the growth regime pattern after point B*, we must consider three interacting cracks shown in
Fig. 4, for which

(3.22)

However, since the spacing between cracks 1 and 3 in Fig. 4 is equal to 2b, the corresponding
initial interaction is weak. In fact, as it has been shown in [4], all the essential features of the
crack growth regime after the bifurcation point can be established quantitatively with almost no
loss in accuracy by considering only two interacting cracks for the present problem. Hence we
shall pursue this approximation below.

On the bifurcated path B*B~ we have the following numerical results for temperature profile
(2.1); for illustration we shall use this temperature profile:

(3.23)

Hence, the stress intensity factor K2 continues to decrease with increasing S and hi. At point
B~ the stress intensity factor K2 is zero, and a further increase in the load parameter results in
the closure of crack 2. At this point and for temperature profile (2.1), calculations show that
crack 2 snaps closed while crack 1 snaps into a finitely longer lenath, for infiaitesimaUy larger
values of the load parameter 3; this is illustrated in the next section. Henee point 81 defiDes a

3

2
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

:------3b-------
I

Fic. 4. A. unit cell with three unequal cracks: Crack 2 will involve both Modell and 11.
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IIIGp-tIuo",1a critictJI stGte. In the, iDfiDitesima1ly smaU aeiIIaborhood of this state, there are no
equilibrium states corresponding to (infinitesimal) d8 >O.

FroiD the relation between the energy release rate and the stress intensity factor in Mode I, it
bas been shown in[3] that

(3.24)

Since at point B~ we have K2 =0, this point is characterized by

(3.25)

ActuaUy, since 8K./81a2 is in aeneraI non-positive, if this quantity is plotted as a function of h..
the curve would be tangent to the h.-axis at the critical point defined by (3.2S); see Nemal­
Nasser It tJI. [3].

For some other temperature profiles, e... (2.2), it bappens that K2 never reaches zero. In this
case, crack 1 and 3 of F.,. 4 beain to have sianificant interaction, and one of them stops at a
e:ataia stable· bifurcation point before the stress intensity factor at crack 2 can reach zero
value. For cases of this kind there is DO crack closure. This hIS been illustrated in[3] for
temperature profile (2.2).

3.4 Ellet of small imperjlCtions
In the precedina discussions we consider idealized cases where the cracks are equaDy spaced

and the material properties are bomopneous. This cannot exist in acbII1litD1dou lad there are
always some imperfections present. It is known in strueturaI aaaIysis that even very SDI&Il
imperfections may introduce substantial reduction in the critical value of the !old parameter at
which the structure becomes unstable. It turns out that a similar role is played by small
imperfections in the stability of a system of interactiDa tension cracb. The impedection in the
present case may be a sn.u deviation from an equally speced crack pattern (i.e. unequal crack
spad...), or it may be small nonhomopneity in material properties, e.J. the critical value or the
Stress intensity factor at one crack may exceed by a small amounttbatat theothercrack in the unit
cell of FII. 2.

When the cracks are unequaDy spaced, then both Modes I and II wiD be involved and this
will complicate the calculations substantiaDy. On the other hand, when equI spacina is used,
but different values are assiped to the critical stress intensity factor at the two cracks within a
unit cell, the effect of imperfection can be studied without additional elaborate computations.
For the purpose of illustration we shall give numerical examples in Section 4, usq the latter
type of imperfection.

To discuss the effect of imperfection, it is convenient to introduce the notation

which measures deviation from the fundamental equih"brium path. Hence, in the II, I-plane the
fund............. path coiDc:ides with the '-ois; see Pia- 5(a). At poiat B·, COD'"
(3.5) flintutided,1Dd1leDce,tIIis isastablebifurcItion point. Atpoint B..critical COIIlIidoa (2.6)
holds,...'-ce, this isan unstable bifurcation point. All poiatiabove B. 011the,.... iD Pia. 5(a)
are unatable bifurcation poiaD; at tbae points, the bifurc:Ited equilibrium ........ a IIIIItive
slope, the.......~ at B. AD points on the 8-axis between..and Bu are stablebit.cation
points.

The path B·B~ in the II, 8-p1ane is the bifurcated path on wbic:h laz-1az(B*) - COIlIfaDt,
K2<~ and, as we dilcussed before, this is the path that actually wiD be followed in the
absence of any imperfection.

Assume now that the critical stress intensity factor at crack 1 is K.c. but that at crack 2 is
Kc +-K.c. where .... I, e.... - few percent. Then, as 8 is increased, crack 2 wiD lave a shorter
Ieqth than crack 1 (see Jlia. Sb), and therefore, II as a functioa of 8 wiD follow a path similar
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Fig. 5. Post-aitical response and the eieet of imperfection.

to that sketched in Fig. 5(a) by curve ab,. At a certain point. say, b* (Fig. Sa), on this curve,
crack 2 stops growing, and crack 1 then continues to grow at a faster rate; the corresponding
point, on curve 1 is denoted by bT and that on curve 2 by b! in Fig. 5(b). Por a certain
temperature profile, e.g. (2.1), the stress intensity factor at crack 2 reaches zero at point b, in
Fig. 5(a), after which crack 2 snaps closed as crack I extends by a finite amount. At this point, U

increases by a .large finite value. The crack spacing is then doubled, and the whole process
repeats itself.

To Jive an analytic description of some of the above behaviors, one may use a perturbation
approach as fonows.

The crack Ieqths for nonzero e are functions of this parameter, ~ == Me), i =1,2, so are the
stress intensity factors K/ = K/(hb h2; 6, e). Hence, for fixed I; we may write

(3.26)

and

(3.27)

(3.28)

where on the fundamental path, h,(O) == h,(O) and Kl == K2 == Kr In equs (3.26) and (3.27) all
partial derivatives are evaluated on the fundamental equilibrium path, i.e. at E == O. Further­
more, it is assumed that the deviations from the fundamental path, denoted by M, and ~h2, are
small; eqns (3.27) apply to points below critical point b* in Fig. 5(a).

Equations (3.27) caa be solved 'for ~hl and M 2, and since on the fundamental equilibrium
path iJK./iJh l == iJKz/iJh2<0 and iJK1/iJh2 == iJKz/ah, <0, we obtain

~hl--[Kc ::f{ (~~I'r -(~~:r}) >0,

~h2- [Kc ~~: f { (~~Ilr-(~~:r}} <0,
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where, since the derivatives in (3.28) are calculated below the stllble bifurcation point B* of
Fig. 3, conditions (3.1) are valid and hence,

(3.29)

As long as D is a relatively large finite quantity,lAh,1 remains of the order of I, as shown by
(3.28). As we inc::rease 8, the positive quantity D tends to decrease, becoming zero at the stable
bifurcation point B*. Henc::e, the deviation from the fundamental equilibrium path, charac­
terized by

(3.30)

tends to' increase with increasing 8; approximation (3.30) is valid only for points below the
critical point b* in Pia- S(a) which correspond to points bT and b! in Fig. 5(1).

For a fixed value of imperfection, 1 =10 and for 8 <8*, consider an increment in the load
parameter, d8 >0, and calculate the corresponding increase in crack lengths, dh. on curve (1)
and dh2 on curve (2), of rig. S(b). Since the new state must be in equilibrium, we have

(3.31)

(3.32)

where the partial derivatives are calculated on curves (1) and (2). Note that, unlike the
eorrespondil18 expressions in eqns (3.2), here aKI,ah. vf; aK2Iah2• aK.,ah2 vf; aK2Iah.. and
aKI'aBvf; aK2aB. We DOW solve (3.31), and obtain

!!!!l=[aK2 8K. _ 8KI8K2J1[8KIaK2_ 8K28KIJ
dh. 8h l a8 ah, 88 8h2 88 8h2 aB .

At point b!. dh2=0 and hence. this state is characterized by

(3.33)

In the absence of imperfection, (3.33) reduces to the critical condition defined by (3.5).
Equation (3.24) remains valid provided that the quantites are evaluated at 1 =80. and for hI

and h2• given by the correspondina points on curves (1) and (2). Hence, (3,25) deftnes the
snap-throulb critical point b, in rig. Sea).

3.5 SIImnuuy of billie mults
For the two mt.ac:tina c:rac:ks shown in Fig. 2, the fundamental equilibrium path is defiDed by

(3.34)

The fundamental equilibrium path will be foUowed as Iona as

(3.35)
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The first critical point is a stable bifurcation point attained when

(3.36)

All points on the fundamental equilibrium path for which

(3.37)

holds, are stable bifurcation points. The unstable bifurcation point is first reached when

(3.38)

All points on the fundamental equilibrium path for which

(139)

holds, are unstable bifurcation points. In all cases we always have on the fUlldamental equili­
brium path,

(3.40)

this bas been proved elsewhere, (3). On the bifurcated path, on the other hand, K I ¢ K2 and,
instead of (3.40), we have

(3.41)

the equality sign corresponding to the snap-through instability point at which, say, K2 =0 and
hence, crack 2 snaps closed as crack 1extends by a finite amount.

The introduction of a very small material imperfection results in deviation of the equili·
brium path from the fundamental equilibrium path for all finite values of S and this deviation
increases with increasing S. Along the new equilibrium paths, the crack with the larger value of
the critical stress intensity factor, say crack 2, stops at the critical state defined by

(3.42)

After this, crack 1 continues to grow with increasing a, until the snap-throulh critical state
defined by

(3.43)

is reached. An infinitesimal increase in a then results in a snap closure of crack 2. as crack I
extends by a finite amount.

4. NUMERICAL RESULTS

In this section the theory is illustrated by means of·numcricaI examples~ Consider an infinite
strip of finite width 2L, containing equally spaced edge cracks at both its edges; see Fig. 6. We
shall examine the growth.regime of these cracks for both temperature profiles (2.1) and (2.2). To
associate our results with those presented in [3,4,11], we choose the critical value of the stress
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I-- L -+- L ---I
F".,. 6. A strip with periodically spICed _ CI1ICks.

intensity factor att

Kc = 0.06~ToV211'L, ~ = &B!(l- JI),

and introduce the following non-dimensional quantities:

C/fl =h"JL, F/fl =K.J~Tov:;r,

~~: =( aa~: )1~ToV 11'1L, m,n =1,2.

(4.1)

(4.2)

4:1 Temperature profile (2.1)
To obtain the fundamental equilibrium path, we choose (arbitrarily) the initial crack SJ*ing

such that blL =0.16. Then for each value of the load parameter a, we c:alcuIate 1I,-lIz such
that K I =K2 =Kco In Fig. 7 curve AB is obtained in this manner. For states c:orrespoacIiDa to
the AS· portion of this path, aF,1aCt = aFJaczs aF,1ac2 = aFJact < O. abe eq.aity sip cor­
responding to the stable bifurcation point B·. Althouah states between B· ad B. 011 this path
are stable, another stable equilibrium path emanates form each of these poiDts. Correct to about
1%, the stable bifurcation point B· is defined by 81L =0.315 and C, =Cz• 0.274; this crack
length is less than half of the crack length pertaining to the unstable critical point B. obtaiDed
in [3,11].

After point B·,crack 2ceases to grow, while crack 1continues toextend, as ais increased. As is
shown inFiI- 7 thegrowth rate is initially twice u fut as tbat ontbe~ equilitJlium path.

1bis leads to tile stIbIe braDcb B·B~ on which aF,lac, <O. AIoIIItIIia ...... Pa. as weU as
laF,'c1C~, continue to decrease monotonicaJly with increasiDa 8, as shown in Pia- 8,...zero
wbenllL =0.420and C, =0.387. At this point,ThecbaJwes intbeslreaiateasityflctorllretiven
by

dF. =-1.571 dC,-0.OO7dC2 + 1.596d(I/L),

dF2 =-0.173 dC, +0.956dC2 -0.645 d(ML). (4.3)
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Fig. 8. Stress intensity factors and their derivatives with respect to crack 1cqdIs; blL • 0.16.

and dF2 =O. These relations imply

d(81L) <0, dC.=O, dC2 =0.674d<81L)<0. (4.4)

Hence we have a snap-throush critical state at which crack 2closes and crack I extends by a small
but finite amount. The crack spacq is then doubled, b/L =0.32.

Branch AfBT in Fig. 7 corresponds to the state in which every adler crack is c1osed.This
new state is stable, since aF.,aC\ = aFJ8C2 < aF\lac2=aFJaC\ <0. Astable bifurcationoccurs
at the point BT where 8L =1.064and C\ =C2 =0.946. After this point, crack 2ceues to pow and
a process similar to that descn'bed above may be expected. However, since the strip bas a finite
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width, another critical point, D.. will be attained, where 8/L:I: urn, C. - 0.977, aDdBFI/BC. =
d81dh. -0. The final fracture of the strip occurs at D.. whn CI'ICks rn.. the opposite sides of
the scrip join spoatIDeOUSIy. If the initial crack SI*iIrI is Iaqer than h/L • 0.32, then one stable
bifurca1ioa poiDt with the coasequeat fracture of the IIrip is eacouatered. NuIDericIl results for
h/L - 0.64 and 1.21 are Ilso shown in Fig. 7. As aD extreme case the reaults for b/L =co is
calculated by the simple ....... Jiven in AppIDl:b C. In this case, the stable bifurcation
point B* does not exist, and the c:riticII point D. carraponds to 6/L - 0.065 and C. =0.72.

Consider now the effect of small imperfectioDs. To this end let the critical value of the stress
intensity factor at crack 1 be given by (4.1) and that at crack 2 by ICc +eKe. For e =0.03 and
0.09 the correspondiDg crack IfOwth resimes are shown in Fig. 9. Crack 1 which bas a smaller
critical value of the stress intensity factor, grows at a faster rate than crack 2. Crack 2 stops at
point h*, wbiIe crack 1continues to IfOW with increasina 8, until point h~ at wbic:b it snaps into
the new braneb A.B.. while crack 2 snaps closed. For e = 0.03 we have 6(h*)/L - 0.238,
h.(h*)/L = 0.214 and ~h*)/L =0.200, whereas for e - 0.09 the corres,pondina quantities are
0.193,0.177 and 0.16). The map-throUJb occurs for e -0.03 at 6(b,)/L=0.324, h.(h,)/L -0.306
and for e - 0.09 at respective values of 0.274 and 0.261.

4.2 T~,roIk (2.2)
For this temperature profile the results are given in Fig. 10. Cw'ves AS and A.B. are the

fuadamea1aI paths for b/L - 0.32 and 0.64, respectively. On these curves B* and BT are the
correspondiDa stable bifUrcation points. At B* crack 2 stops, wbiIe crack 1 JI'OWS at a faster
rate, fOl'lllilll a bifurcated path which approaches the second fundamental path A.B. close to
the latter's stable bifurcation point BT. In this case, however, no crack closure OCCW'S. In[4] it
has been shown that even if three interacting cracks are considered, Faa. 4, still no crack
closure is predicted and while the stress intensity factor at crack 2 is still finite, cracks 1and 3

_________________ 4

0.4

A

Q10.!-:-.I-------::0'!-:-2-------.},QS:------~Q4,....--G-.Ca

Jlia. 9. CJ'ICk powtb rqime lor two iDtenlctiaI CI'ICb in IIIIJit ceJI; taJJperIIIae"". (11).
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Fig. 10. Crack growth regime for two interac:ting cracks in a unit teD; temperature profile tqII (2.2).

become highly interactive and in fact, one of them stops growing as the other continues to grow
at a faster rate; see[4] for further discussion.

We have also examined the effect of initial imperfection in the crack growth regime for
temperature profile (2.2). Figure 10 shows the results for 6 =0.07. In this fiaure, 8(b$)/L =
0.168, h\(b$)/L = 0.102 and hz(b$)/L = 0.070. Note that 8(b$)/L is more than 1596 smaller than
8(B$)/L =0.221.
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APPENDIX A
Method of analysis

Let V denote the rqion occupied by the elastic body. In the absence of body forces, the field equations are,
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"'" • 0in V.

".., • 14 011 Sr.
.,· .. OII~

(A. I)

(A.2)

.... c:a... falowld by ID iIdcx dcaoIcs partiIl a..,iIIi- with respect 10 tile cormpondilll cordinate, the
p faa OIl IWfIIIed iadica is lIIed .. "/ ..... die COIIlIIlC*nts of tile exterior unit noma! to the
bcll-.IIr)' of die ; Sr is die put 0( the bouadIry 01\ whidI __ COftPOllellts of lrICtioRs. 'i. II'e prescribed and S. is
put OIl which __ ,..III of dle dilpllc _elll. "'1Ie....1IIe lIIIit cell and the correspclIIlIin eIasIicity boundary
__ proIIInl is shown in fiI. AJ. The equi¥*nt thenullnCtioIlS II'e

',,"x,,-b!2)=O,

'~XIo-b!2)= -~(T - T.).Osx, sll.;

'.(x" b/2) =0,

Iw(x"b/2) =~(T - Te).Osx, sllz; (AJ)

.... ~ • iE/(1 - ..). ti beiDa tile c:odic:ieat of thenuI expaasion.t
AccGnIiaI to[JI). .. 1nI ........ the reIadoa beCWIClI cnck (1110 liz) ud tile peMIrItioa depIh ilL in such a

_ dIIIllIIc ...... iIItady fKIors of eacIl powiaa cnck its c:riticIJ VIIue. 1'baI .. ealculate the derivatives
of the ...... inlclllity facIon. IK",J1It., for the purpose of sIIbiIity _ysis.

The doIIinaDt terms of stI'e*S II'OURd the /11th crack tip can be represented in the followilll form:

(A.4)

X2

f-- --- - ------
I---h2---j

b

bl2

bIZ

hi -, b

1---- -- • -- . .
(0)

X2 .I(2)
2

x'!-'I

,...----------
,- '" "II
I (It)

fie. AI. (a) Typical UIIit cell COIlIiICiDa of two -actilc.. cncks; (b) The basic elasticity boundary_
VIIue problem.

o

;I--t--------""""'t.
~

tln(3.4), j .... been iItt:onw:tly liven IS 3ciEI(1 -u). The results which II'e aU in dimensionless form are IIDt however
afectecl by this. • ,
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where (r., 9.) is a loca1 polar c:oordiaatc whole oriIiB is Iocatod at the mth crack tip aud lT~r., B..) aud u~(r., •• ),
k=1,2, are given in Appendix B. The c:06ints b\·' aud b~·' can easily be determiDed as the Taylor expuajon
coeIkients of appIiecI trac:tioDs at the mth crack tip, wbiIe 41\·' aud 41~·) are determiDed by the method of supefllOSition()f
analytical and finite.eIemeat 1OIutions[lI,14.1S}. The stress intensity factor K... is expressed as

K
3yr,;: ,..,

"'=-4- 41 , • (A.S)

aud the !old parameter 8 is so determiDecl that K. equals the critic:aI value at the JIOWia& c:rKk tip.
If we diferentiate eqn (A.I) with respect to the crack IenIIh Ir., the soIIItion of the probInI, -"BIt.. is obUi&ed as

(
-~ Q\·)lT~+ (BaI

O
'_1 a~·')IT~+ (BbIO' -3br))v~ +O(r':'~ for m" /I,-b.' _ 2 a1l" 2 ah,.

air. - ~a("" ~b(""
"I I" I -I +0( In. fala" lTij+ ala" lTij r ... } orm¢/I. (A.6)

near the mth crack tiP. where lT~ has a sinaularity of O(r;;.JI2j as shown in Appendix B. Here we defint new variables.

(A.7)

wbere /I? represents the displacement field l:Om8pODdiDa to the stress field lT~. These variables are chosen in such a
manner that the sialuJarity of the order r;lI2 is removed from the derivative problem. With the aid of (A.7). and upon
differentiation of (A. I) with respect to Ia". we write

(A.S)

The stress distribution around the mth crack tip can be expressed in the same manner as (A.4); here, this becomes

(A.9)

The unknown c:oelficients a~l. k, m, /I = I. 2. can be determined by the same method used for the analysis of stress
intensity factors. Comparing (A.6) and (A.9). the derivatives of the stress intensity factors are obtained as

j
3yr,;: ( '0' S '0') faK = -4- a., +2 412 orm =/1,

ala"
3v21T ( )-4-a."I for m¢ /I. (A.lO)

APPENDIX B
Various stress fields used in Appendix A, are summarized below.

{

2cos(B./2)- 3sin 8. sin(SB./2), i =j =I.
lTf, = -.r;;.lI2 2cos(B./2)+ 3sin 9. sin(58.,/2), i = j = 2,

3 sin ... <:os(58.,/2), i = I.j = 2; i = 2,j .. 1.

{

1-sin(8.J2)sin(3s./2), i = j = I.
lTlj .. ir;,l/2cos(8.J2) l+siD(f,J2)siI(3f.J2) , i =j = 2,

sin(8.J2)c:0s(3t.J2). i = I,j" 2; i .. 2,j = 1.

{

J+sin1B./2). i=j=l.
lT~ '" 1/r:!,2 cos(8.J2) 1-sin1'.J2), i = j = 2,

- sin('.J2) cos(8.J2), i .. I. j =2; i =2. j '" 1.

{

2+coutant. i = j = I,
v1J(r•• II.. )= 2. i=j=2.

O. i¢ j.

i
Sr. cos II... i .. j '" I.

u~(r.,II.) = 6r.. cos.II.... ~ =!= 2.
-6r.. smll.... '¢j.

(B.I)

(B.2)

(BJ)

(B.4)

(B.5)
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APPENDIXC
~ "cNd:IiII_strip
~ to "'(16], 1M ..... lateuity fllCfGr of tile cncu IhowJI in F... CI can be expressed as

f(E/II) = 1.30 -O.69<E/llt+OJ9<Elllt.
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(C.I)

(Cl)

(CJ)

N....... CIICI........ Ire perfOl'lllCld to obtIia tile reIatioIIs between CI'lICk IenIth II IIICI tile penetratioIl depth a. such
.... K • K,. It die c:ndt lip and die results are shown in FJI. 7.

I
I

I
I

I
I,
I

I
•L+L
•

I
I

fiI. CI.lnfinite strip with symmetric: edae c:rac:ks.


